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Deformation of a renormalization-group equation applied to infinite-order phase transitions
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By adding a linear term to a renormalization-group equation in a system exhibiting infinite-order phase
transitions, the asymptotic behavior of running coupling constants is derived in an algebraic manner. A benefit
of this method is presented explicitly using several examples.
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I. INTRODUCTION

The renormalization-group~RG! technique is one of the
most powerful methods for investigating critical phenome
in statistical physics@1#. In general, RG transformatio
~RGT! consists of a coarse graining and a rescaling. It
duces many-body effects in a statistical model to an ordin
differential equation of coupling constants. The different
equation is called the RG equation~RGE!, and generally has
the following form:

dg

dt
5V~g!, ~1!

where g5(g1 , . . . ,gn), a collection of coupling constant
depending ont, andt5 ln L with L giving the length scale o
the coarse graining in the RG. One obtains a beta func
V(g)5@V1(g), . . . ,Vn(g)# by applying the RGT explicitly
to a statistical model. We can derive universal exponents
characterize critical phenomena from asymptotic behavio
solutions of Eq.~1! for large t.

Since the asymptotic behavior is determined by vicinity
a fixed pointg* , linearization ofV(g) aboutg* is effective
enough to obtain the exponents. For example, in a sec
order phase transition, the correlation lengthj typically be-
haves as

j5const/uT2Tcun, ~2!

wheren is the correlation-length exponent andT is a param-
eter specifying a state in a statistical model~e.g., the tem-
perature!. In the language of RG,T parametrizes initial val-
ues of RGE. The trajectory starting from the initial value
T5Tc is absorbed into the fixed point. Other trajectori
approachg* once but leave the fixed point subsequently,
shown in Fig. 1. This implies that it takes longer forg to
leave the fixed point asT approachesTc . If the scaling ma-
trix M (g* ), where

Mi j ~g* ![
]Vi

]gj
~g* ! ~3!

has a unique positive eigenvaluea, then this period behave
as const3(T2Tc)

2a. The universal exponentn is obtained
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from a by n51/a. Thus we do not need to find an explic
solution of generally nonlinear RGE~1!.

On the other hand, in the case of infinite-order phase tr
sitions,j behaves as

j5const3exp~A/uT2Tcus!, ~4!

where s is a universal exponent andA is a nonuniversal
constant. Such behavior is observed when all the coup
constants are marginal, i.e., the canonical dimensions of
coupling constants are zero atg* . Since the linear term in
V(g) is proportional to the canonical dimensions ofg,
Mi j (g* )50 for all i andj. It indicates that we cannot extrac
the asymptotic behavior from the scaling matrixM (g* ) in an
infinite-order phase transition, in contrast to a second-or
one. Therefore, explicit solutions were traditionally requir
in the case of an infinite-order phase transition such as
BKT phase transition@2#.

This difficulty has been recently overcome in Ref.@3#,
where an RG for RGE~1! is used for deriving asymptotic
behavior of solutions. A general idea of RG, applied as a t
for asymptotic analysis of nonlinear differential equations
developed in Refs.@4,5#.

In this report, we present another method. Namely,
derives from the following deformed RGE:

dg

dt
5e~g2g* !1V~g![V̄~g!, ~5!

wheree is a real number but not necessarily small. As w
will see in the next section, the RG equation~7! for the RGE
~1! has a complicated form compared with the deform
RGE. Hence, using the deformed RGE makes derivation
the critical exponent simple. Another benefit of this approa
is as follows: suppose that an infinite-order phase transi

FIG. 1. Typical RG trajectories near a phase transition. AsT
changes, an initial value moves on the dashed line. The trajec
with T5Tc is absorbed into the fixed point.
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occurs when the spatial dimensions of the original statist
model aredc . Then, the deformed RGE can be derived wh
they aredc2e, under the condition that all the couplin
constants have a common canonical dimension. This co
tion is satisfied by various field-theoretical models, e.g.,
effective theory of antiferromagnets@6#, a model containing
several gauge fields@7#, a model describing true self
avoiding random walks@8#, and a model of nematic elas
tomers@9#. In Ref. @9#, infrared asymptotic behavior indc
dimensions and that indc2e dimensions are analyzed sep
rately because of the problem of the vanishing scaling ma
explained above. Our method enables us to obtain unive
quantities in both of the cases simultaneously. We will sh
this advantage in the last example of Sec. IV.

II. RGE FOR RGE

Here we summarize the results of Ref.@3# that will be
used later. We consider an RGE~1! for infinite-order phase
transitions that are controlled by a fixed pointg* . In what
follows, we put g* 50 for convenience. Suppose that w
have obtainedV(g) by the lowest-order perturbation. Sinc
linear terms vanish in infinite-order phase transitions, co
ponents ofV(g) are quadratic ing. Hence the scaling prop
erty

V~kg!5k2V~g! ~6!

holds in this case. The algebraic method to computes shown
in Ref. @3# employs another RG than Eq.~1!, which is de-
fined as follows: letg(t,a0) be the solution of Eq.~1! with
the initial conditiong(0,a0)5a0. Choose a real numbert
and we evolveg in time by s(t), such thatetg„s(t),a0…

PS, whereS is a sphere with the radiusa0[ua0u and with
the center at the origin. Thus we have the m
Rt :a0°etg„s(t),a0…[a(t). Thanks to Eq.~6!, Rt satisfies
the semigroup propertyRt1t85RtRt8 , so thatRt is called
RG for RGE ~1!. The infinitesimal transformation leads t
the following new RGE:

da

dt
5b~a![2

P~a!V~a!

a•V~a!
a0

2 , ~7!

where P(a) is the projection operator defined byPi j (a)
5d i j 2aiaj /a0

2. Sinceb(a) is perpendicular toa, solutions
of the new RGE are restricted onS. Introducing the polar
coordinates$ua%1<a<n21 on S and the corresponding ortho
normal basis

ẽa[ f a~a!21
]a

]ua
, f a~a![U ]a

]ua
U, ~8!

we can expandb(a) as

b~a!5 (
a51

n21

b̃a~a!ẽa . ~9!

The new RGE is represented as
01710
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dua

dt
~a!5 f a

21~a!b̃a~a! ~10!

by the polar coordinates.
It is easily found thata* PS is a fixed point of the new

RGE ~7! if g(t,a* ) is a straight flow line. In particular, a
fixed point on an incoming straight flow line satisfyinga*
•V(a* ),0 plays an important role because trajectories n
this fixed point correspond to trajectories of Eq.~1! ap-
proachingg* . In contrast to the original RGE, we can ge
erally linearize the new RGE abouta* . In Ref. @3#, it is
shown that the scaling matrix of the new RGE

mab~a* ![ f a
21~a* !

]b̃a

]ub
~a* ! ~11!

plays a similar role toM (g* ) in the original RGE describing
a second-order phase transition. Namely, if the matrixm(a* )
has a unique positive eigenvaluel, in which typical trajec-
tories of the original RGE are in Fig. 2~a!, we can observe
divergence of the correlation length by one-parameter tun
and

s5
1

l
~12!

in Eq. ~4!. On the other hand, if all the eigenvalues ofm(a* )
are negative, where typical trajectories are in Fig. 2~b!,
g(t,a0) behaves as

g~ t,a0!;
1

C~a* !t
e* . ~13!

In this formula,e* [a* /a0 andC(g) is defined by the rela-
tion

C~g!ugu352g•V~g!. ~14!

The asymptotic behavior in Eq.~13! is important for inves-
tigating finite size scaling in a statistical system, for examp

FIG. 2. Schematic trajectories of RGEs. The solid lines are
the original RGE~1! while the dashed lines are for the new RGE~7!
defined onS. Here ~a! is the case where a unique positive eige
value exists inm(a* ). ~b! The case where all the eigenvalues
m(a* ) are negative.
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III. DEFORMED RGE

Next, we consider the deformed RGE~5! putting g* 50.
We can takee.0 without loss of generality. A fixed pointc*
of the deformed RGE solves as

V̄~c* !5ec* 1V~c* !50. ~15!

A key feature of the deformed RGE is thatc* in Eq. ~15! and
a fixed pointa* of the new RGE~7! on an incoming straigh
flow line has one-to-one correspondence via

a* 5
a0

c*
c* ~16!

as depicted in Fig. 3. WritingV(g) as

V~g!5 (
a51

n21

Ṽa~g!ẽa1Ṽn~g!ẽn , ~17!

where ẽn[g/g, we have the deformed RGE in the pol
coordinates

dua

dt
~g!5 f a

21~g!Ṽa~g!,

dg

dt
~g!5eg1Ṽn~g!. ~18!

Expanding the above formula about the fixed pointc* , we
have the following scaling matrixM̄ (c* ):

M̄ab~c* !5 f a
21~c* !

]Ṽa

]ub
~c* !,

M̄an~c* !5 f a
21~c* !

]Ṽa

]g
~c* !,

M̄na~c* !5
]Ṽn

]ub
~c* !,

M̄nn~c* !5S e1
]Ṽn

]g
~c* ! D , ~19!

FIG. 3. ~a! Schematic trajectories for the original RGE.~b!
Those for the deformed RGE.
01710
wherea andb run from 1 ton21. SinceṼa(g) is a com-
ponent perpendicular tog, one finds thatṼa(kc* )50 for all
k with help of Eqs.~6! and ~15!. This means that]gṼa(c* )
50. On the other hand,]gṼn(c* )52Ṽn(c* )/g* 522e be-
causeṼn(g) is quadratic ing. Therefore,

M̄an50, M̄nn52e ~20!

in Eq. ~19!. Furthermore, we can rewriteM̄ab(c* ) in terms
of mab(a* ). In fact, m(a* ) in Eq. ~11! is written as

mab~a* !5 f a
21~a* !

1

C~a* !a0

]Ṽa

]ub
~a* !. ~21!

Employing the scaling properties

C~kg!5C~g!

f a~kg!5k fa~g!

]Ṽa

]ub
~kg!5k2

]Ṽa

]ub
~g!, ~22!

we get

M̄ab~c* !5emab~a* !. ~23!

Equations~20! and ~23! show thatM̄ (c* ) has the form

~24!

in polar coordinates. It readily follows from this formula th
M̄ (c* )ẽn52eẽn . Thus we can derive all the eigenvalues
m(a* ) from M̄ (c* ) by removing2e, which is the eigen-
value corresponding to the eigenvectorẽn , from the set of
the eigenvalues ofM̄ (c* ) and, by multiplying by 1/e, the
remaining eigenvalues. Further, if all the eigenvalues
M̄ (c* ) are negative,g(t,a0) behaves as

g~ t,a0!;
1

C~a* !t
e* 5

1

et
c* , ~25!

according to Eq.~13! and the scaling property ofC(a* ) in
Eq. ~22!.

IV. EXAMPLE

Here are several examples. The first example is ta
from the two-dimensional classicalXY model @2#. Here, the
beta functionV(g) is given as
1-3



s

he

or

an

ed

e-

two

ted

del

ex-

-
d is

ing

f a
ng
ply

BRIEF REPORTS PHYSICAL REVIEW E70, 017101 ~2004!
V~g!5S 2g2
2

2g1g2
D , ~26!

for g1 ,g2.0. The deformed RGE has the fixed pointc*
5(e,e). The scaling matrixM̄ (c* ) of the deformed RGE is
easily computed in terms of the Cartesian coordinates a

M̄ ~c* !5S e 22e

2e 0 D . ~27!

It has the eigenvalues2e and 2e. Employing Eq.~12!, we
get

s5
e

2e
5

1

2
, ~28!

which is a well-known result. As we have explained in t
previous section, the other eigenvalue2e always appears in
a deformed RGE~5!, which corresponds to the eigenvect
c* /c* .

The next example is the RGE in a one-dimensional qu
tum spin chain, studied by Itoi and Kato@10#; it is defined by

V~g!5S g1~Ng112g2!

2g2~2g11Ng2!
D . ~29!

The deformed RGE has the following three nontrivial fix
points:

c1* 5S 2
e

N
,0D , c2* 5S 0,

e

ND , c3* 5
e

N22
~21,1!. ~30!

The corresponding scaling matrices are

M̄15S 2e 2
2e

N

0
N12

N
e,
D , M̄25S N12

N
e 0

2
2e

N
2e
D ,

M̄35S Ne

22N

2e

22N

2e

22N

Ne

22N

D . ~31!

The eigenvalues of those matrices are, respectively,
,

01710
-

N12

N
e,

N12

N
e,

21N

22N
e, ~32!

up to the common eigenvalue2e. The other eigenvalues
divided by e are equal to those of the scaling matrices d
rived from the new RGE~7!, which is computed in Ref.@3#.
It should be noted that the deformed RGE’s in the above
examples do not correspond to those in 22e and 12e di-
mensions, respectively. However, the derivation presen
here is much simpler than the method using Eq.~7!.

The last example is the RGE in a field-theoretical mo
for nematic elastomers, proposed in Ref.@9#. In contrast to
the previous examples, the deformed RGE is obtained
actly in 32e dimensions with

V~g!5
21

8~4g11g2! S g1~40g1
2168g1g2113g2

2!

2g2~4g1
2132g1g217g2

2!
D . ~33!

Although V(g) is not quadratic polynomial, our result is ap
plicable because all we need to apply the present metho
the scaling property ofV(g), Eq.~6!. The deformed RGE has
the three fixed points

c1* 5S 4e

5
,0D , c2* 5S 4e

59
,
32e

59 D , c3* 5S 0,
4e

7 D . ~34!

One can check that the scaling matrices have the follow
respective eigenvalues:

4e/5, 24e/59, and e/14 ~35!

in addition to the common eigenvalue2e. Now we turn to
the case of just three dimensions. Ifg1 ,g2.0, infrared be-
havior of a system is governed by the fixed pointc2* @9#.
Since the eigenvalue atc2* is negative,g(t,a0) behaves as

g~ t,a0!;
1

et
c2* 5

1

t S 4

59
,
32

59D ~36!

for sufficiently larget, according to Eq.~25!. The result is
consistent with that in Ref.@9#.

V. SUMMARY

We have shown how to derive asymptotic behavior o
solution of RGE for infinite-order phase transition, by addi
a linear term to this RGE. This method can allow us to ap
a result of thee expansion to the case wheree50.
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