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Deformation of a renormalization-group equation applied to infinite-order phase transitions
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By adding a linear term to a renormalization-group equation in a system exhibiting infinite-order phase
transitions, the asymptotic behavior of running coupling constants is derived in an algebraic manner. A benefit
of this method is presented explicitly using several examples.
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[. INTRODUCTION from « by v=1/a. Thus we do not need to find an explicit
solution of generally nonlinear RG&).

The renormalization-groupRG) technique is one of the On the other hand, in the case of infinite-order phase tran-
most powerful methods for investigating critical phenomenasitions, ¢ behaves as
in statistical physics[1]. In general, RG transformation
(RGT) consists of a coarse graining and a rescaling. It re- £=constexp(A/|T—T|"), 4
duces many-body effects in a statistical model to an ordinar
differential equation of coupling constants. The differential
equation is called the RG equatidRGE), and generally has
the following form:

YWhere o is a universal exponent anél is a nonuniversal
constant. Such behavior is observed when all the coupling
constants are marginal, i.e., the canonical dimensions of the
coupling constants are zero gt. Since the linear term in

9 V(g) is proportional to the canonical dimensions gf
E=V(g), (1) M;;j(g*)=0 for alli andj. It indicates that we cannot extract

the asymptotic behavior from the scaling matiXg*) in an
infinite-order phase transition, in contrast to a second-order
one. Therefore, explicit solutions were traditionally required
in the case of an infinite-order phase transition such as the
BKT phase transitiof2].

This difficulty has been recently overcome in RES),
here an RG for RGE1) is used for deriving asymptotic
ehavior of solutions. A general idea of RG, applied as a tool
for asymptotic analysis of nonlinear differential equations, is

whereg=(g4, ...,dn), a collection of coupling constants
depending on, andt=In L with L giving the length scale of
the coarse graining in the RG. One obtains a beta functio
V(g)=[Vi(9), ....,V,(9)] by applying the RGT explicitly
to a statistical model. We can derive universal exponents that
characterize critical phenomena from asymptotic behavior o,
solutions of Eq.(1) for larget.

Since the asymptotic behavior is determined by vicinity of .

; . . o . X developed in Refd4,5].

x *
a fixed pointg ,_I|near|zat|on ofV(g) aboutg® is e_ffectlve In this report, we present another method. Namely, we
enough to obtain the exponents. For example, in a second;_ . . .
. . : derive o from the following deformed RGE:

order phase transition, the correlation lengttypically be-
haves as dg o
qi €9 g)+V(9=V(g), ©)
E=const|T—T,|", 2

where € is a real number but not necessarily small. As we
will see in the next section, the RG equatigh for the RGE
perature. In the language of RGT parametrizes initial val- (1) has a compllicated form compared with the d_efor med
ues of F\"GE The trajectory starting from the initial value atRGE..I.-lence, using the deformed RGE mgkes Qer|vat|on of
T-T. is ab'sorbed into the fixed point. Other trajectoriesthe critical exponent simple. Another benefit of this approach
¢ . ' ; is as follows: suppose that an infinite-order phase transition
approachg* once but leave the fixed point subsequently, as
shown in Fig. 1. This implies that it takes longer fgrto T
leave the fixed point a$ approached .. If the scaling ma- ~~ ¢

trix M(g*), where S~

wherew is the correlation-length exponent afds a param-
eter specifying a state in a statistical modelg., the tem-

oV,
Mij(g*)Ea_gj(g*) ©)

has a unique positive eigenvalue then this period behaves g
as consk (T—T.)~ “. The universal exponent is obtained

FIG. 1. Typical RG trajectories near a phase transition.TAs
changes, an initial value moves on the dashed line. The trajectory

*Electronic address: mukaida@saitama-med.ac.jp with T=T, is absorbed into the fixed point
c .
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occurs when the spatial dimensions of the original statistical a*
model ared... Then, the deformed RGE can be derived when
they ared.—e€, under the condition that all the coupling
constants have a common canonical dimension. This condi-
tion is satisfied by various field-theoretical models, e.g., an
effective theory of antiferromagnef6], a model containing
several gauge field$7], a model describing true self-
avoiding random walk$8], and a model of nematic elas-
tomers[9]. In Ref. [9], infrared asymptotic behavior id, S
dimensions and that id.— e dimensions are analyzed sepa- (a) (b)
rately_ because of the problem of the vanishing SC"’!"“g matrix FIG. 2. Schematic trajectories of RGEs. The solid lines are for
explalln.ed gbove. Our method e_nables us to obtain gnlversme original RGH1) while the dashed lines are for the new RGE
qgantltles In bOt_h of the cases simultaneously. We will ShoV‘ﬂefined onS. Here(a) is the case where a unique positive eigen-
this advantage in the last example of Sec. IV. value exists inu(a*). (b) The case where all the eigenvalues of
p(a*) are negative.

S

Il. RGE FOR RGE

Here we summarize the results of RE3] that will be do, — 1\ 7

: T T (=1, (a)B.(a) (10)

used later. We consider an RGE) for infinite-order phase dr

transitions that are controlled by a fixed pogit. In what

follows, we putg*=0 for convenience. Suppose that we by the polar coordinates.

have obtained/(g) by the lowest-order perturbation. Since It is easily found thag* e S is a fixed point of the new

linear terms vanish in infinite-order phase transitions, comRGE (7) if g(t,a*) is a straight flow line. In particular, a

ponents ofV(g) are quadratic ing. Hence the scaling prop- fixed point on an incoming straight flow line satisfyirag

erty -V(a*) <0 plays an important role because trajectories near
this fixed point correspond to trajectories of EJ) ap-

V(kg)=k?V(g) (6) proachingg*. In contrast to the original RGE, we can gen-

erally linearize the new RGE aboaf. In Ref.[3], it is

holds in this case. The algebraic method to compusthown  shown that the scaling matrix of the new RGE

in Ref. [3] employs another RG than El), which is de-

fined as follows: lefg(t,a;) be the solution of Eq(1) with iB,

the initial conditiong(0,a5) =ay,. Choose a real number ,uaﬁ(a*)zf;l(a*)ﬁ(a*) (12

and we evolveg in time by s(7), such thate"g(s(7),ap) B

e S, whereSis a sphere with the radius,= and with . _ - .
the center at the origin. Thus Vl?g La;\he the mapplays a similar role tavi(g*) in the original RGE describing

R,:ap—e"g(s(7),ap)=a(7). Thanks to Eq(6), R, satisfies a second_—order phe_lse tr_ansition. N_amel_y, if the_ manﬂa_*)
the semigroup propertR.. ..=R.R.., so thatR, is called has a unique positive eigenvalie in which typical trajec-

RG for RGE(1). The infinitesimal transformation leads to ;[jqries of the ;)rri]ginal R?E ar? in T}i%‘(@’ we can observe_
the following new RGE: ivergence of the correlation length by one-parameter tuning

and
da_ P(a)V(a)

— 2
ar PO=T G " ot

(12)

where P(a) is the projection operator defined W9;;(a) _ _ _

=5, —a;a;/a. Sincep(a) is perpendicular t@, solutions  in Ed.(4). On the other hand, if all the eigenvalues.ofa*)

of the new RGE are restricted @ Introducing the polar are negative, where typical trajectories are in Figb)2
coordinateg 6,} 1 ,=n_1 On Sand the corresponding ortho- 9(t.8) behaves as

normal basis
fa da g(t,a0)~ (13
2= 177 = C(a*)t
&=fo(@ 5o fu@= |70, ® (a*)
We can expang(a) as {ir:);his formula,e* =a*/a, and C(qg) is defined by the rela-
n—-1 3
B(a)= Zl B.(a)e,. (9) C(9)ld*=—9g-V(9). (14
The asymptotic behavior in Eq13) is important for inves-
The new RGE is represented as tigating finite size scaling in a statistical system, for example.
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wherea and B run from 1 ton—1. SinceV,(g) is a com-

a ~
ponent perpendicular tg, one finds tha¥ ,(kc*)=0 for all
k with help of Egs.(6) and(15). This means tha&gva(c*)
=0. On the other handjyV,(c*) =2V, (c*)/g* = — 2¢ be-
causeV,(g) is quadratic ing. Therefore,
6] 0] . o
(a) (b) Mn=0, Mp,=—¢€ (20)
FIG. 3. () Schematic trajectories for the original RGE))  in Eq. (19). Furthermore, we can rewritél ,5(c*) in terms
Those for the deformed RGE. of pap(@*). In fact, u(a*) in Eq. (11) is written as
lIl. DEFORMED RGE 1 v

*\— f Ll % *
Next, we consider the deformed RGE) putting g* = 0. Pap(@) =T, 7(@) (@) @D

C(a*)ay 998
We can takee>0 without loss of generality. A fixed poirt*

of the deformed RGE solves as Employing the scaling properties
V(c*)=ec* +V(c*)=0. (15) C(kg)=C(g)
A key feature of the deformed RGE is th#tin Eq.(15) and fa(kg)=kf,(9)

a fixed pointa* of the new RGE7) on an incoming straight

flow line has one-to-one correspondence via % ) — K2 N o 09
7, KO=K75°(0), (22
* — ao *
a —C—*c (189 e get
as depicted in Fig. 3. Writiny/(g) as M ap(C*) = €pap(@). (23
n-1 L Equations(20) and (23) show thatI\W(c*) has the form
V(9= 2, Vu(gie.t V(g)en, (17) 0

where'e,=g/g, we have the deformed RGE in the polar
coordinates

(29)

do, .
gt (9 =Ta (9Va(9),

in polar coordinates. It readily follows from this formula that
dg - == . .
—(g)=€g+V,(Q). (18) M(c*)e,=— €€, Thus we can derive all the eigenvalues of
ol u(a*) from M(c*) by removing — €, which is the eigen-
Expanding the above formula about the fixed paiht we value corresponding to the eigenvectyr, from the set of

have the following scaling matrid (c*): the eigenvalues oM (c*) and, by multiplying by 1¢, the
remaining eigenvalues. Further, if all the eigenvalues of

L i N, I\W(c*) are negativeg(t,a;) behaves as
M, p(c*)=f, (C*)W(C*)'
B

1 1

t,ay) ~ e =—c*, 2
B 5 ota0)~ =g (25

M an(c*) =1, 1(c")—=(c*), , , _
9 according to Eq(13) and the scaling property d@(a*) in

_ Eq. (22).
Moo(c)= 2o ()
ne dbg " "’ IV. EXAMPLE

~ Here are several examples. The first example is taken
6+0Vn(c*) (19 from the two-dimensional classicXlY model[2]. Here, the
ag ' beta functionV(g) is given as

Mnn(C* )=
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for g1,0,>0. The deformed RGE has the fixed porit

=(€,€). The scaling matri>{\7(c*) of the deformed RGE is
easily computed in terms of the Cartesian coordinates as

|

It has the eigenvalues € and 2. Employing Eq.(12), we
get

V(g)= ( (26)

—2€
0

M(c*>=( ) (27)

— €

(28

which is a well-known result. As we have explained in the

previous section, the other eigenvalue always appears in
a deformed RGES5), which corresponds to the eigenvector
c*/c*.
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N+2
N

N+2
N

2+N
2-N©

€, €, (32)
up to the common eigenvalue e. The other eigenvalues
divided by e are equal to those of the scaling matrices de-
rived from the new RGE?7), which is computed in Ref3].
It should be noted that the deformed RGE’s in the above two
examples do not correspond to those in 2 and 1— e di-
mensions, respectively. However, the derivation presented
here is much simpler than the method using &.

The last example is the RGE in a field-theoretical model
for nematic elastomers, proposed in Réf]. In contrast to
the previous examples, the deformed RGE is obtained ex-

-1

actly in 3— e dimensions with
= . (33
8(40:+ 02) ) 33

91(40g5 +683,9,+1395)
295(497+32919,+ 793)
Although V(g) is not quadratic polynomial, our result is ap-
plicable because all we need to apply the present method is

V(g)

The next example is the RGE in a one-dimensional quanthe scaling property d¢(g), Eq.(6). The deformed RGE has

tum spin chain, studied by Itoi and KafdO]; it is defined by
91(Ng1+29>)

—02(29,+ Ngz)).

The deformed RGE has the following three nontrivial fixed
points:

c=-<0 0=
1 N! 1 ’N

The corresponding scaling matrices are

V(9)

(29

*

C2:

*

.

_ €
—m(—l,l). (30

2€ N+2
TN N €
M,= M=
. N+2 b2 2¢ :
O E, _—— — €
N N
Ne 2€
_ 2—-N 2—N
Ms= 2€ Ne (31)
2—N 2-—N

The eigenvalues of those matrices are, respectively,

the three fixed points

o, -5 5 o

One can check that the scaling matrices have the following
respective eigenvalues:

4e
?l

4e 32¢
59’ 59

C*: C*: *:
1 2 C3 7

4e
O,—) . (39

4el5, —4€l59, and e/14 (35)

in addition to the common eigenvaluee. Now we turn to
the case of just three dimensions.gif,g,>0, infrared be-
havior of a system is governed by the fixed podjt [9].
Since the eigenvalue &} is negativeg(t,a,) behaves as

4 32
59’59

1 1
*

9(tag)~ &= ¢ (36)

for sufficiently larget, according to Eq(25). The result is
consistent with that in Ref9].

V. SUMMARY

We have shown how to derive asymptotic behavior of a
solution of RGE for infinite-order phase transition, by adding
a linear term to this RGE. This method can allow us to apply
a result of thee expansion to the case whete=0.
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